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ABSTRACT

3

isotropic Newtonian fluids is investigated. The fluids are compressible,

The initial value problem associated with the eguations of motion for

viscous and heat-conductive. It is proved that there exists a unique

global solution in time, for the small initial data, and the solution has

o e————

—————

the decay rate of ( (1 + t)-3/4 as t ;*:EZ:>
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SIGNIFICANCE AND EXPLANATION

from
6". <A
\kA

The motions of compressible, viscous and heat-conductive fluids are
described by a system of partial differential equations which is of
hyperbolic-parabolic type and highly nonlinear. One of the first mathemati-
cal problems associated with this system is the initial value problem. We
obtain the existence of a unique smooth global solution in time for the
initial value problem and also the decay rate of the solution as time tends
to infinity.

Since the system is quasilinear with respect to the unknowns: density,
velocity and temperature, we need to assume that the initial data are close

to the constant equilibrium state. The proof which is necessarily quite

U vs——

technical, involves a combination of the estimates for the decay rate of

solutions of the linearized equations as time tends to infinity, together

| A et TR
o

with energy estimates in the space of square summable functions. Our method {
to obtain the "small" but global solution in time for this particular nonlinear

problem is rather general and can be applied to many systems of nonlinear

partial differential equations, if the solution of the linearized equation has

an appropriate decay rate as time tends to infinity (e.g. dissipative equations,
parabolic equations and so on) and if the nonlinear equations are amenable to

ordinary energy estimates.
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THE INITIAL VALUE PROBLEM FOR THE EQUATIONS OF MOTION
OF COMPRESSIBLE VISCQUS AND HEAT-CONDUCTIVE FLUIDS

Akitaka Matsumura* and Takaaki Nishida**

§1. Introduction and Theorem
The motion of the general isotropic Newtonian fluids is described by the five

conservation laws:

Py * lou X, 8
j
i 1 j ) :
(1.1){ ekt e s SRGOE W L Al Y d=l. 2,3
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where p: density, u = (ul, u2, u3): velocity, 0: absolute temperature,
p =plp, 8): pressure, u = u(p, 6): viscosity coefficient u' = u'(p, 8): second
viscosity coefficient, « = xk(p, 8): coefficient of heat conduction, ¢ = cip, 8):
g A SR S ieleals R ein SR e
heat capacity at constant volume and VY = 5 (u + ux ) +u (ux )": dissipation
e i
function. We consider the initial value problem for (1.1) with the initial data

3

(1.2) (P, v, 0)(0, x) = (ps uy, By (x) , xeR

0
We seek the solutions in a neighbourhood of any constant state (p, u, 8) = (0, 0, 8
where 5, 8 are any positive constants. Thus we assume the following natural
conditions on the system (1.1) of hyperbolic-parabolic type throughout this paper:
(i) p, ¢, u, ' and x are smooth functions in @ = {(p, u, 0): |p- p|, |u],

o - 8] <€}

(11) 9p/9p, 9p/90 > 0, €, U, kK > 0 and n' +%u >0 in @,

where & < min {p, 6}.
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First rewrite the system {1.1) by the change of the unknown and known variables

as follows: p»p +p, ur u, 0% 8 +8, p(d +p, 8 +8) % plp, 8), wd +p, u, § + &)

» e, u, 8) and so on.

" o W )
| ( L (p, w) 2p *(o'p)u’4u’p = 0
E | t X, %
. i ‘ 3 ]
|
i ] 1 = T | 4 =
e (‘ {1.3) A L (u) = u:-uux o (u+u‘)uix -Gi . $w Y 8,03
i 5 3
| |
- | { tdo) ¢ 8. N R ot
E: 2 2 373
: a where
|
Gi“-bp -p, 0 v g a* s “j+l
; (AR R i B 1 ke R
] i X i
| ) i 5
E | (1.9 ( dtr-dul vt ol osud) ew wdve e
9 § ‘ 3 bl 3 i i
P 3 -
g & -u’ @ + {x @ + ¥}/l +p)e .
X Y
3 S
‘ Here we also use the abbreviations
' BEuE t0) 4 W eu/@ re) , Bo= pp/(5 + )
3 Py * pa/(o ¥ o) L Py * (8 + 8) pe/(o + p)e and
K= x/(p +ple .
k. Let “e“ =1, 2, « v s , 5 be the Sobolev space with the norm | “i of the
b L,)-funCtions having all the U-th derivatives of La-functions. Define & by the
4 Sobolev's lemma so that for Nfll, < ¢ we have max [£] < clifl, < ¢. Denote
‘ ¢ L by TR o G | &
D f = {3 f/axlaxzax3 for all u,nl#024u3~.ﬂ.2-1."',4.
The initial data for (1.3) are given by
: v :
% (1.5) P, vy 8)(0) = (Do. Wy 00) e U n Ll for A e el
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|
The solution is sought in the space of functions X (0, » ; E) for some E < ¢,

£ =3 or 4, where for. 0 gt <t <w

1 2
N 3 0 0 1 =1
X, tzyh)-i(n. u, 8)(t): plt, %) ¢« C (t)0 t, & W) al (€0 &) 3 H )
¢ 1 -2
ulE, W), B0 ) e SR e W e R i
(1.6)
nlottn B MY L ek g
t
2 2 2 2 2
sup o, u, O] + [ o (s2My + Il tu, @) (s, ) ds < E°}
t <ttt t
1=="2 1
Theorem
R o

Consider the initial value problem (1.3) (1.5) and let the initial data have the

norm for & = 4

(1.7 £y =l (p, u, e)(cm!l + 0, u, e)(o)uL L R
1

Then there exist positive constants 60 and C < w (C0 60 < &) such that if

0

L

B, < 60, then the problem (1.3) (1.5) has the unique solution (p, u, 8)(t) in

large time such that

©o u, 0)(8) € X' (0, ® Sy B

and it has the decay rate

3/4
(1.8) I, u, 9)(%)“2 < C0 El/(l * %) v

In particular if u, u' and x do not depend on o, then the above assertion holds

for & = 3 also.

In [1] we obtain the same type of result in the more restricted case of a
polytropic gas. We also refer the reader to (1) for the bibliography of other known

results,
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§2. Proof of Theorem

Theorem is proved by a combination of a local existence theorem and a priori

estimates for the solution in xl.
Theorem 2.1 (local existence)

Consider the initial value problem (1.3), t > % Let the initial data

1

(0, u, 9)(t1) € Hg for . bl o -4
Then there exist three constants 61 > O c1 <™ (C1 61 < g) and T > 0 which are

independent of ty such that if Il (p, u, 0)(t1)u < 61. then the problem (1.3)
3

(1.5) has the unique solution

(0w B)LE) € xlnl. €+t e, w0l ) .

» t

The proof for % = 4 1is the same as that for polytropic gas in [1]. We need an
approximation of the initial data in H4 and the L2 energy estimate for the case
L =13,

Theorem 2.2 (a priori estimates)

Suppose that for the initial data having the norm El < o for R =4, there is

a solution

®, u 8)(t) € X*(0, T ; E)

for some T > 0 and some E < ¢. Then there exist positive constants cz(< £

62 and C2(C2 62 < g€) such that if E < €y and El < 62, then the solution has the

a priori estimates

(D. u, 8)(t) ¢ xl(o. il C2 El) v

' 62, C. do not depend on T. 1In particular in the case of (1.9) the above

where ¢ 2

2
estimates are true for ¢ = 3 also.




Proof of Theorem

4+ We use the
-

Take 60 = min (61. 62, ‘2/c1‘ 61/02. ‘2/C1 C:a) and C = C

standard continuation argument of local solution on [0, n 1], n= 1, 2,
the global solution. 1In fact by the local existence theorem, the definition of

60 and the assumption (l':'~ < 60) we have a positive constant 1t and a local

solution

P, u, 8)(t) € X (0, 15 C Wl

1

By C, B, <€ 8y < €, and E, < 60 £ 62. a priori estimates gives

;)
(P, u, 8)(t) € X (0, T ; C2 Et) %

But by CZ B, < C2 60 < 61 and the local existence theorem, we have again

2
o, u; 0)(t) € X ly, 2t ; C1 C2 Eg) .

Now by C, C B, < C <, 60 Lk, and B, < § <3 a priori estimate shows

Sl o T 2 ey R S

P, u, 8)(t) e Xn(O. 2t ; C2 Bl) .

Thus we can continue the same arguments on [n 1, (n + 1)r) and [0, (n + 1)71)

successively n= 2, 3, ¢ ¢ ¢+

to get

o St ade

St i
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£3, A Priori Estimates

We present here a géneral method to obtain a priori estimates for small solutions
of equations with dissipation, which is a combination of the linear spectral theory
and the L_~-energy method. First we rewrite the system (1.3) so that all the non-

linear terms appear at the right hand side of equations:

-}~0
b e U f '
j
(31)’ui*;c +p, 8 - P S v e -igt T T
g T 2 =%, - X, X 2 SR '
\ i 3 G 19
‘ T A - ¢
Lﬁttpj uy an'x. f '
3 373

where £ = {f', i=0, + - + , 4} is at least quadratic functions of (p, u, 8) and
their first and second derivatives, and Bl B ﬁp(O, ), 52 = ﬁB(O. 0), 53 - 53(0, 0).,

%= (0, 0, 0) u' = p*{o, 0, 0), £ = x(0, O, O) are positive constants.
t o -
Set U= (./.\/p1 0. u,Y8/c(0, 0, 0) e) and write (3.1) in the form

(3.2) Ut + AU = F(U)

The Fourier transform i(&) of the linear partial differential operator A is the

S x5 matrix

L500 -ia(k Q
- L, L 0 e G :
3 A(g) = | -iag, -4’ - S —ibE
(3.3) (£) l ag | us ™ gl WU & ibe
Xos -ibE, w Wit L
SR

where a = /p (0, 0), b = p,v8/c(0, 0, 0) and j, k run from 1 to 3. The
b

eigenvalues ., j =1, * * * , 4 of A and their projections Pj, foma Ry Sonl ety

on the eigenspaces are analyzed by




(i1)

(iv)

(v)

(3.5)

depends on i |£| only and xj =0 Aff Jk] w0, gma, Y - TR

# A

3 K’ j # k, for all ]&] except at most four points of ]5' >0

There exist positive constants r < rz such that Aj has a Taylor (Laurent)

series expansion for |g| < r (lg| > r,. respectively). Specifically, the

Taylor series has the form

g AL P g
S R L e o e R LN PR 13 DL P
2(a” + b")

AI (complex conjugate)

2 -

: 2
= e (A IRH
a

i BT (at DA YUY - At &
2
(a2 + bz)

) (i |E|)4 PTETE

K
+

= 2
\A4 ni lgh

rank (A, - A) = 3 for all [g] > o.

4

The matrix exponential has the spectral resolution

: 4 A (E)
ShE) 7

e J P, (£)
=1 2

for all IEI except at most four points of IEI > 0.

.

N @ < for [g] <x

It has the estimate by the modification of the right hand side of (3.5) near

the points of a multiple eigenvalue

fe Bl < et s o

for IEI > T, and a positive constant B.




There is a constant C = C(¢) such that

2
ur(ule N LOUIERCN T s

k :
Ip” F(WIl < C IIU|I2 "wlk‘z for k=1, 2

In particular in the case of (1.9)

(3.9) io® Bl < clul, il +

Pro‘osxtxon -

There exist 63, €5 and C3 such that if E! < 63 and E < Eqe then U(t)

satisfying (3.2) has the estimates

( Ho(e)l, < ¢, E (1 + &)

. 2
[0 lutel ds < ¢, B,

3/4

where 1 = 4 in general and & = 3 for the case (1.9).

The Proposition is a consequence of Lemmas 3.1 and 3.2. In fact we have

=3/

ool < ¢ e as

E
fee) el dee-n
0 2 5

i ot
vl <c. B a+0 vl aee- qusn, -
-0 % 0 2

. (WU(s)"2 ¥ ||U(s)||4) ol RewEGe R

/

Therefore for M(t) = sup (1 + s)°>/3 Hu(s)ll, we have M(t) < C B +C M(t)© +

2
0<s<t

C E M(t), where E is the norm (1.6) assumed on the solution. Thus we get the
conclusion of Proposition for 1 = 4.

Next we have to obtain the estimates for the higher derivatives, which is given
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Proiosxtxon 3.4

There exist 64, c4 and C4 such that if El < 64. E < c4 and the solution

U(t) satisfies the estimates (3.10), then the energy estimates hold

t

2
3.0 ot e em? [ 10w, e as <o, B for 2kt
0
m 2 s m 2 2
(3.12) o™ p(e)® + [ D" o(s)I* as <C, E, for 3cmsct
Q

Since we have already obtained the necessary estimates (3.10) for the lower order
derivatives of the solution, the proof of Proposition 3.4 is given successively with
respect to k and m in the same way as that for polytropic gases in [(1]. In fact let
us remind the operators Li, i=0, -+, 4 in (1.3) and note the estimates for the
nonlinear terms g in the right hand side of (1.3).

Lemma 3.5
LR IT I

We have the estimates for k=0, 1, - . . , 4

(3.13) no" gl < c o, u, O, DG, u, &), .

. 2 i . 3
The estimate (3.11) for k = 2 is given by the integration on X € R, 0 < t < T of
the equality

(3.14) B -6 Bttty €Y e e

Integrate by parts, use (3.10) and Lemma 3.5. The estimate (3.12) for m = 3 is

obtained by the integration on X ¢ R3, 0<t<T of the equality

P ae wll am i ~
X, X.
1 >
o i - A < m-1
yonE {D“"I[L‘(u)+pppx-(g‘#peex)}-n o, =0
2u + 4 i i 1

Integrate by parts, use the equation (1.3) and (3.10), (3.11) for k = 2 and Lemma 3.5.

We can proceed to get (3.11) for k = 3 by (3.14) and so on. The detailed arguments




E
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:

using the Friedrichs mollifier and the estimates for composite functions are the same

as that in [1], and so we omit them here.

REFERENCE
(1] A. Matsumura and T. Nishida, "The initial value problem for the equation of
motion of viscous and heat-conductive gases" to appear in Journal of Mathematics,

Kyoto University, 1979.

AM/TN/clk

e

TR AR RS



i A A 0 > . - e g A e N oF S [
?} AHG O S b A A M o 7 g 52 AR NG Y N S o B S0 o P N I ity EErE ey

SECURITY CLASSIFICAYION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING ¥ORM
i NUM 12 GOVY ACCESSION NOJ 3 RECIPIENT'S CATALOG NUMBER
1991 {
3 ;B TITLE cand Subdticie) “y | % TYPEOF REPORY & PERIOD COVERED
” ‘.i/ The Initial Value Problem for the Equations of | | Summary Report - no specific
B g Motion of Compressible Viscous and’}leat- j reporting period
4 : conduct ive Fluids P | | & PERFORMING ORG. REPORYT NUMBER
E 7. AUTHOR(a) e e, ® CONTRACT OR GRANT NUMBE R(«)
N ! i ; ) p— h 4 Sl
!.\ Akxtaka/natsumura aned Takaakx/lemda j“’»/;( DAAG29 -7 “-C~0024J : i
! } -y ——————" {
& T PERFORMING ORGANIZATION NAME AND ADDRESS i3 RROCRAM ELEMENT PROTECT TASK !
: Mathematics Research Center, University of T ;’t "N”"l:\l "“":“'
-‘ ol ol - -
610 Walnut Street Wisconsin rAppll\iod :m;;qiq
! | Madison, Wisconsin 53706
1. CONTROLLING OF FICE NAME AND ADDRESS 15 . REPORT DATE
U. S. Army Research Office 74 Sepbembeet979 |
P.O. Box l22l1 \-—~ T NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 10
PT'. MONITORING \GENCY NAME & ADDRESS(I/ different from Controlling Olfiee) | 18. SECURITY CLASS. (of this report)
™ % {
71 ) ho il TELARLAR T B SN S e 1 UNCLASSIFIED
L el CLASNIF \OING |
o DECL ASSIFICATION DOWNGRADING

76 OISTR BUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

B e

# 4 ¥ 3 h /
/ Li} \ AT K by i ; f f F. %y
i \ & ! A ¢ y
S5} MU (Lo ol
17. DISTRIBUTION STATEMENT (of the abatract sntered in Block 20, i differant from Report)
‘
|
18. SUPPLEMENTARY NOTES } |
= |
. |
E
N
19, XKEY WORDS (Continue on reverae aide if necessary and identify dy Mock number) ;

Initial value problem, BEquation of motion, Compressible, viscous and heat-
conductive fluids, Global solutionsg in time

B s AP 40,7
D s Succ L

20. ABSTRACT (Continue on reverse aide If necessary and identify dy block number)
The initial value problem associated with the equations of motion for = |
isotropic Newtonian fluids is investigated. The fluids are compressible, |
viscous and heat-conductive. It is proved that there exists a unigue olobal
solution in time, for the small initial data, and the solution has the decay

rate of (1 + t)-s/‘ as t > o, s

s

w ':2:“,’ "73 EDITION OF | NOV 68 1S OBSOLETE

UNCLASSIFIED

o B “* A SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)
ol i G & W/




